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Abstract 13	  

 This paper shows demonstrable improvement in the global seasonal climate 14	  

predictability of boreal summer (at zero lead) and fall (at one season lead) seasonal mean 15	  

precipitation and surface temperature from a two-tiered seasonal hindcast forced with 16	  

forecasted SST relative to two other contemporary operational coupled ocean-atmosphere 17	  

climate models. The results from an extensive set of seasonal hindcasts  are analyzed to 18	  

come to this conclusion. This improvement is attributed to: 19	  

i) The global atmospheric model which is run at a relatively high resolution of 20	  

50km grid resolution compared to the two other coupled ocean-atmosphere 21	  

models 22	  

ii) The multi-model bias corrected SST used to force the atmospheric model 23	  

 The results of the seasonal hindcast are analyzed for both deterministic and 24	  

probabilistic skill. The probabilistic skill analysis shows that significant forecast skill can 25	  

be harvested from these seasonal hindcasts relative to the deterministic skill analysis. The 26	  

paper concludes that the coupled ocean-atmosphere seasonal hindcasts have reached a 27	  

reasonable fidelity to exploit their SST anomaly forecasts to force such relatively higher 28	  

resolution two tier prediction experiments to glean further boreal summer and fall 29	  

seasonal prediction skill.  30	  

31	  
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1. Introduction 31	  

 Seasonal climate prediction has been one of the primary drivers of climate science 32	  

for several decades (Barnett et al. 1993; Bengtsson et al. 1993; Shukla 1998; Shukla et al. 33	  

2000; Palmer et al. 2004; Saha et al. 2006; Wang et al. 2009; Kirtman and Min 2009; 34	  

Stockdale et al. 2011), although the emphasis is rapidly shifting to other time scales (e.g. 35	  

intraseasonal, decadal, climate change). As a result of the rich heritage of seasonal 36	  

predictability studies, there is a growing body of application studies in hydrology (Bohn 37	  

et al. 2010; Clark and Hay 2004; Shukla et al. 2012), crop modeling (Cantelaube and 38	  

Terres 2005; Challinor et al. 2005), human health (Morse et al. 2005; Doblas-Reyes et al. 39	  

2005) and in many other sectors which make use of these seasonal climate predictions 40	  

and make them even more relevant to society.  41	  

 There is a burgeoning realization in the last decade or less to move towards a 42	  

“seamless” forecast system (Hurrell et al. 2007; Palmer et al. 2008; Shapiro et al. 2010; 43	  

Shukla et al. 2010). A seamless system ideally entails using the same prediction tool 44	  

across all time scales. This implies that under such a paradigm a fully coupled earth 45	  

system model will be used for numerical weather prediction to climate change 46	  

projections.  Along the same lines of seamless systems there is also a debate on raising 47	  

the resolution of the numerical weather and climate models significantly from their 48	  

current resolution. However, with limited resources the debate is raging on the one side to 49	  

move towards coupling many more climate components to develop an earth system 50	  

framework (seamless in resolving interaction across climate components) and on the 51	  

other side to raise the resolution to levels where parameterization of sub-grid scale 52	  

processes can be totally avoided (seamless in resolution). Arguments for both strategies 53	  
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are persuasive and readers are referred to (Palmer et al. 2009; Shukla et al. 2009) for 54	  

further discussion on this debate. A compromise solution that is now popularly used for 55	  

seasonal prediction by many operational centers around the world is to use the coupled 56	  

physical climate system framework that resolves the interactions of the land-atmosphere-57	  

ocean-seaice while leaving out other components (e.g., biogeophysical and 58	  

biogeochemical interactions, atmospheric chemical interactions). This coupled physical 59	  

climate model used for seasonal prediction is often referred as a single tiered seasonal 60	  

forecast system. 61	  

 In this paper we discuss the results of seasonal predictability from an Atmospheric 62	  

General Circulation Model (AGCM) forced with forecasted SST from another single 63	  

tiered forecast system. This set up common until recently was referred to as the two tiered 64	  

seasonal forecast system. We are motivated to pursue this two-tiered approach as some 65	  

recent studies have shown that with the improvement in the SST forecasts in the El Niño 66	  

and Southern Oscillation (ENSO) over the equatorial Pacific region in the single tiered 67	  

systems, the predictability of the Indian summer monsoon rainfall has demonstrably 68	  

improved from its remote teleconnections with ENSO (DelSole and Shukla, 2012). In 69	  

other words the externally (boundary) forced (or two tier paradigm)  climate anomalies 70	  

are still in play. So in this study we investigate the efficacy on the seasonal prediction 71	  

skill from modest increase in resolution of the AGCM (with twice as high to four times as 72	  

high as the single tiered systems from which the forecasted SST was borrowed) and with 73	  

a new technique to bias-correct the forecasted SST. 74	  

 75	  

2. Experiment Design 76	  
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 The two-tiered Florida Climate Institute-Florida State University Seasonal 77	  

Hindcasts at 50km (FISH50) were conducted with the idea that no future information that 78	  

corresponds to the forecast period will be used and furthermore to make a comparison 79	  

with a couple of available single tiered seasonal hindcasts. At the time of conceiving this 80	  

experiment two dynamical seasonal forecasts of SST that were readily available were 81	  

those from the NCEP CFSv2 (Saha et al. 2010) and CCSM3.0 (Kirtman and Min 2009). 82	  

Both these models are run at relatively coarser resolution of T126 spectral truncation 83	  

(~100km grid spacing) for CFSv2 and at T85 spectral truncation (~150km grid spacing) 84	  

for CCSM3.0 compared to T248 spectral truncation (~50km grid spacing) of FISH50. 85	  

However as Kirtman and Min (2009) point out the skills of the models (CFSv2 and 86	  

CCSM3.0) in forecasting the tropical SST’s are somewhat orthogonal, suggesting that 87	  

model average across the two models produce superior prediction skill for example over 88	  

Niño3.4 region compared to either one of the models when examining the hindcasts over 89	  

several years. Both these models however have systematic errors in SST (Fig. 1). When 90	  

this multi-model averaged SST is used without any bias correction, it can detrimentally 91	  

affect the prediction from the high resolution FISH50. For example the cold bias in the 92	  

equatorial Pacific and the warm bias in the eastern subtropical oceans are persistent in 93	  

both models, which when averaged across the two models will continue to persist. In 94	  

order to ameliorate these errors we chose to do bias correction on the multi-model 95	  

averaged SST (from the two models). Traditionally the bias correction would involve 96	  

replacing the forecast climatology with the corresponding observed climatology 97	  

(Drijfhout and Walsteijn 1998; Kirtman et al. 2002; Kirtman 2003). This procedure is 98	  

however not operable in a true forecast environment where the observed climatology is 99	  
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computed over the forecast period. This issue of choosing the period of observed 100	  

climatology becomes even more acute when you begin to see the significant impact of 101	  

low frequency variations including secular change on the mean. For example, Fig. 2 102	  

shows the comparison of the observed climatology of SST computed over the period 103	  

1955 to 1981 (prior 27 years) and 1982 to 2008 (current 27 years that coincide with the 104	  

period of the seasonal hindcasts of FISH50). Fig. 2 shows that the difference in the 105	  

climatology between these two periods for the two seasons of June-July-August (JJA) 106	  

and September-October-November (SON) is comparable to anomalies from El Niño and 107	  

the Southern Oscillation (ENSO) in the equatorial Pacific Ocean. In order to circumvent 108	  

this issue we use a time varying climatology that incorporates the linear trend along with 109	  

the other low frequency variations in the following manner: 110	  

SSTF = SSTOLF + SSTACYCLE + SSTAMME -----------------------------------------------------(1) 111	  

where SSTF is the forecast SST used to force FISH50 AGCM. SSTOLF is the observed 112	  

low pass filtered SST and avoids any use of observations of SST during the seasonal 113	  

forecast period of the year. It is however updated at the start of each seasonal forecast. 114	  

SSTOLF is computed from the Extended Reynolds SST version 3 (ERSSTv3; Smith et al 115	  

2008) at its native 2° grid resolution. SSTACYCLE is the stationary, monthly observed 116	  

climatology of SST obtained from the ERSSTv3 computed between 1901-1981 at the 117	  

native 2° grid resolution. SSTAMME is the monthly and multi-model ensemble mean 118	  

SSTA made available at 1° grid resolution. The monthly mean SSTF which is then 119	  

computed on the SSTAMME at 1° grid resolution is then linearly interpolated to the T248 120	  

gaussian grid of the FGSM. The monthly mean SSTF is then interpolated to daily time 121	  

interval following Taylor et al. (2000).  122	  
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 SSTOLF is obtained using the spatial-temporal Multi-dimensional Ensemble 123	  

Empirical Model Decomposition (MEEMD; Wu et al. 2009). MEEMD is based on 124	  

Ensemble Empirical Mode Decomposition (EEMD; Wu and Huang 2009) which itself is 125	  

based on Empirical Mode Decomposition (EMD; Huang et al. 1998). In EEMD, the SST 126	  

time series at each spatial grid is adaptively decomposed into a small number of 127	  

amplitude-frequency modulated components, with that number usually smaller than the 128	  

base 2 logarithm of the length of the time series. An illustrative example of the EEMD 129	  

decomposition of a climate time series can be found in Wu et al. (2011). After the 130	  

ERSSTv3 time series at all grid points across the globe are decomposed, the multidecadal 131	  

component and the secular trend are combined to generate SSTOLF at each grid. Although 132	  

the decomposition does not use any information of spatial coherence, the obtained 133	  

evolution of SSTOLF are both temporally and spatially coherent and exhibit large spatial 134	  

scale features when the SSTOLF at all grids are pieced together using MEEMD. 135	  

 Each season has six ensemble members in FISH50. The ensemble members in 136	  

FISH50 differ only in their atmospheric initial conditions. The six initial conditions of the 137	  

atmosphere are obtained from the six successive days starting from 0000UTC 28 May 138	  

through 0000UTC 03 June, interpolated to the FISH50 grid from the NCEP-DOE 139	  

Reanalysis (R2; Kanamitsu et al. 2002a). The land initial conditions are kept identical in 140	  

all six-ensemble members and are interpolated linearly from the R2 reanalysis 141	  

corresponding to 0000UTC 01 June. The SSTAF is also kept identical for all ensemble 142	  

members. 143	  

 144	  

3. Model Description 145	  
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 The AGCM used in this study has its origins from the Experimental Climate 146	  

Prediction Center (ECPC) AGCM (Kanamitsu et al. 2002b; Shimpo et al. 2008).  147	  

However, a few subtle but important changes were made to the AGCM to adapt to this 148	  

study and henceforth referred as the Florida Climate Institute-Florida State University 149	  

Global Spectral Model (FGSM). Typically the ECPC GSM was run at spectral truncation 150	  

of T62 (~250km). We raised the resolution to spectral truncation T248 (~50km). This 151	  

forced us to change the convection scheme, which was previously using Relaxed 152	  

Arakawa Schubert (RAS; Moorthi and Suarez 1992) to Kain-Fritsch version 2 (KF2; 153	  

Kain and Fritsch 1993) as the model climatology of rainfall was greatly improved with 154	  

the latter scheme at T248 spectral truncation (Fig. 3). The rainfall climatology in Fig. 3 155	  

was generated from a preliminary single ensemble member 10 year seasonal hindcast for 156	  

a 6-month integration period of FGSM forced with SSTF and initialized on 0000UTC 01 157	  

June conditions from R2. It is apparent from Figs. 3a, c, and e that the KF2 scheme 158	  

greatly reduced the dry bias in the June-July-August (JJA) season over the equatorial 159	  

oceans displayed by the RAS scheme (Fig. 3c). In the process the ITCZ and western 160	  

Pacific warm pool rainfall climatology appears relatively far more realistic in the KF2 161	  

run (Fig. 3e). However the dry bias over the Indian monsoon region and the wet bias over 162	  

equatorial Africa and South America and central America are accentuated further by KF2 163	  

(Fig. 3c). Similarly in the September-October-November (SON) season, KF2 continues 164	  

to improve the rainfall climatology over the equatorial oceans (Fig. 3f) and greatly 165	  

ameliorates the split ITCZ phenomenon displayed by the RAS scheme over the Indian 166	  

Ocean (Fig. 3d). The ITCZ structure in the Pacific also appears far more realistic in the 167	  

KF2 seasonal hindcasts (Fig. 3f) compared to the RAS (Fig. 3d). However the wet (dry) 168	  
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bias over equatorial Africa, Central America, and the Amazon region is perpetuated by 169	  

the KF2 seasonal hindcasts from the earlier season (Fig. 3e). In summary, from 170	  

examination of these preliminary seasonal hindcasts we were convinced that KF2 171	  

convection scheme was a better choice for this resolution of the model.  172	  

In FISH50, we also changed the concentration of CO2 following the Mauna Loa 173	  

observatory (http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html#global) at the start of 174	  

each seasonal hindcast. The radiation scheme for longwave follows from Chou and 175	  

Suarez (1994) and that for shortwave from Chou and Lee (1996). The boundary layer 176	  

parameterization is the non-local scheme (Hong and Pan 1996). The land surface scheme 177	  

used is the 4-layer NOAH scheme (Chen and Dudhia 2001; Ek et al 2003). 178	  

 179	  

4. Results 180	  

The results will largely focus on precipitation and surface temperature over land 181	  

as they reasonably reflect on the overall fidelity of the model and are two of the most 182	  

widely used variables for application studies. We will begin with examining the 183	  

climatology and deterministic skill of the seasonal hindcasts followed by the probabilistic 184	  

skill. It is now well recognized in the community that it is perilous and in fact 185	  

inappropriate to examine only the deterministic skill of a seasonal forecast model given 186	  

the imperfections of the initial conditions and the models (Mason and Graham 1998, 187	  

2002; Palmer et al. 2000). For precipitation we use the NCEP’s Climate Prediction 188	  

Center Merged Analysis of Precipitation (CMAP; Xie and Arkin 1997) available at 189	  

monthly intervals and at 2.5° spatial resolution for validation. For validation of surface 190	  

temperature we use the monthly mean Climate Research Unit version 3 (CRUv3; 191	  



	   10	  

Mitchell and Jones 2002) surface temperature available at 0.5° spatial resolution. 192	  

 193	  

a) SST forcing 194	  

The SSTF (equation 1) biases at zero lead for JJA and at one season lead for SON 195	  

are shown in Figs. 4a and b. The cold bias along the equatorial oceans and in the 196	  

subtropical Pacific and Atlantic oceans displayed by both CFSv2 (Figs. 1c and d) and 197	  

CCSM3.0 (Figs. 1e and f) are greatly reduced in SSTF. Similarly, the warm bias in the 198	  

eastern subtropical Pacific and Atlantic Oceans displayed by both the models is also 199	  

greatly reduced in SSTF. This improvement in SSTF is commendable given that the 200	  

methodology to compute SSTF ensures that observations of SST during the forecast 201	  

period are not used. In Fig. 5 we show the corresponding standard deviation of the 202	  

seasonal mean SST from observations, SSTF, CFSv2, and CCSM3. At the outset the 203	  

standard deviations seem comparable. There is however subtle but important differences 204	  

in the various SST forecast products compared to the observations: 205	  

• The higher standard deviation of SST along the middle latitude storm track 206	  

regions is rather strong in CCSM3 (Figs. 5d and h) while it is weak in CFSv2 207	  

(Figs. 5c and g) relative to the observations (Figs. 5a and e). SSTF in FISH50 208	  

(Figs. 5b and f) shows the SST variability in this region is somewhere in between 209	  

that displayed by the two models, which is still underestimating the observed SST 210	  

variability.  211	  

• Similarly in the southern hemisphere the SST variations in the polar ocean are 212	  

much stronger (comparable) in CFSv2 (CCSM3) relative to observations. SSTF in 213	  

FISH50 has SST variations in this region which are still higher than the observed 214	  
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variations and CCSM3 but less than those in CFSv2. 215	  

• Over the equatorial Pacific, the SSTF in FISH50 displays higher SST variations 216	  

off the coast of Peru-Ecuador than either of the two models in both seasons.  217	  

• SSTF in FISH50 also tends to reduce the SST variability between 150°W-120°W 218	  

relative to either of the other two models along the equatorial Pacific and is more 219	  

akin to observations. 220	  

 221	  

b) FISH50 Climatology 222	  

 The summer (at zero lead) and fall (one season lead) climatology of precipitation 223	  

from observations and root mean square errors (RMSE) from FISH50, CFSv2 and 224	  

CCSM3.0 are shown in Fig. 6. It is apparent from this figure that the RMSE in the 225	  

tropical regions is much higher in FISH50 compared to either of the two models. FISH50 226	  

seems to ubiquitously rain more in the global tropics. This is also illustrated in the zonal 227	  

mean climatology of rainfall shown in Fig. 7. FISH50 in both seasons rains the most in 228	  

the deep tropics. In fact FISH50 rains more than the observations in nearly all latitude 229	  

bands but is comparable to CFSv2 in the higher latitudes (Fig. 7). This excessive wet bias 230	  

may be a result of the absence of the damping effect of an interactive SST in FISH50, 231	  

which is otherwise present in the coupled ocean-atmosphere models. 232	  

 Similarly the climatology of the surface temperature from observations and the 233	  

corresponding RMSE from the three model seasonal hindcasts are shown in Fig. 8. The 234	  

RMSE errors of FISH50 are comparable to the other two models in the deep tropics. But 235	  

in the subtropical and middle latitudes FISH50 exhibits a higher RMSE error especially 236	  

over Eurasia, the central United States and over North Africa. In fact in the two seasons 237	  
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FISH50 displays a weak warm bias in the deep tropical land areas, a relatively colder bias 238	  

in the subtropical land area and a comparatively large warm bias in the mid-latitude 239	  

regions (not shown).   240	  

 241	  

c) Deterministic Predictability 242	  

In this section we will examine the variability of the anomalies from the ensemble 243	  

mean of the seasonal hindcasts, which is a deterministic approach to skill assessment of a 244	  

forecast model. It is sometimes useful to examine this deterministic skill of the model as 245	  

it can quickly point to the existence of any region of high seasonal predictability from 246	  

external forcing like SST anomalies. Although it undermines the potential to harvest skill 247	  

from the ensemble spread of the model, which will be demonstrated in the subsequent 248	  

section.  249	  

Fig. 9 shows the correlation of the seasonal mean rainfall from the three models 250	  

with the corresponding observations for both seasons. It is sobering to note that 251	  

statistically significant skill (at 90% confidence interval according to t-test) is most 252	  

prominent in the equatorial Atlantic and Pacific Oceans while they are nearly absent in 253	  

the land areas. There is however some display of significant positive correlations over 254	  

some of the islands in the maritime continent in the western Pacific Ocean. Furthermore 255	  

by the subsequent SON season (at one season lead forecast) there is significant 256	  

diminishment of the spatial extent of these correlations in all three models. In comparing 257	  

the three models it is observed that they display comparable skill in this metric in the first 258	  

season of hindcast (JJA). In SON as well it could be argued that the skills are comparable 259	  

although FISH50 hindcasts seem to deteriorate slightly more than the other the models.  260	  
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The signal to noise ratio (see appendix I) of the rainfall (Fig. 10) shows that all models 261	  

exhibit significantly higher predictability over the tropical oceans compared to that over 262	  

land with the exception of the Amazon region. This signal to noise ratio in all three 263	  

models shows significant reduction in the second season (SON) of the forecast over these 264	  

regions. There are, however, several interesting points that one can observe from 265	  

comparing these figures: 266	  

• CCSM3 exhibits higher predictability in the tropical Indian and Atlantic Ocean 267	  

than either of the two models in both seasons. 268	  

• CCSM3 persists with this higher signal/noise ratio in the SON season from the 269	  

previous JJA season far more than either of the two models. 270	  

• Over Amazon, FISH50 exhibits the highest signal/noise ratio compared to the 271	  

other two models in both seasons. 272	  

Similarly the correlations of the seasonal mean surface temperature anomalies 273	  

over land with corresponding observations from the three models are shown in Fig. 11. 274	  

We note here that FISH50 exhibits higher skill than the other two models over South 275	  

America, Africa, Northern Australia and the southwestern United States in the first 276	  

season of the hindcast (JJA). CCSM3 surprisingly displays barely any skill in either of 277	  

the two seasons.  Over Asia, CFSv2 shows a higher skill than FISH50 in JJA. However, 278	  

similarly to rainfall (Fig. 9), we observe that there is significant deterioration of the 279	  

positive correlations of the seasonal surface temperature anomalies in the subsequent 280	  

season of SON. The signal to noise ratio of the surface temperature from the three models 281	  

is shown in Fig. 12. As in the case of rainfall anomalies, we observe higher ratios for 282	  

surface temperature anomalies over the tropical oceans, Amazon and over equatorial 283	  



	   14	  

Africa. But compared to rainfall anomalies (Fig. 10), the surface temperature anomalies 284	  

exhibit higher ratios over land. In comparing the three models in Fig. 12 we observe: 285	  

• All three models exhibit a reduction in the ratio from the first season (JJA) to the 286	  

second season (SON). This reduction is much higher over land than the oceanic 287	  

regions. 288	  

• In both seasons the signal/noise ratio of the surface temperature anomalies in the 289	  

tropics is much higher in FISH50 than in either of the two models. 290	  

• In the higher latitudes CCSM3 exhibits higher ratio than either of the two models. 291	  

Although in SON the ratio in FISH50 in the southern hemisphere mid-latitudes is 292	  

comparable to that in CCSM3. 293	  

 294	  

d) Probabilistic Prediction Skill 295	  

 We compute the Area under the Relative Operating characteristic Curve (AROC; 296	  

see appendix II) to examine the probabilistic skill of these seasonal hindcasts&. We 297	  

examined the AROC for the predictability of the lower, middle and upper terciles of the 298	  

summer and fall seasonal anomalies of precipitation (Figs.13-16) and surface temperature 299	  

(Figs. 17-20).  The tercile thresholds for the models and observations were based on the 300	  

respective model hindcast and observed seasonal anomalies for the period 1982-2008. 301	  

The benefit of examining probabilistic skill is immediately apparent from Figs. 13-20 by 302	  

noticing that useful skill could be harvested from these models over the land areas, which 303	  

was otherwise noted to be bereft of any skill in terms of the ensemble mean seasonal 304	  

anomalies.  In both the seasonal precipitation and surface temperature anomalies, FISH50 305	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
& We also compare the FISH50 AROC with the rest of the National Multi-Model 
Ensemble (NMME) models in Appendix III 
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displays generally a higher skill than either of the two coupled models. More specifically 306	  

we see from these figures that  307	  

• The AROC for the seasonal precipitation and temperature anomalies reduces in 308	  

most parts from JJA to SON for all three models as was observed earlier with the 309	  

deterministic skill analysis. 310	  

• All three models show superior skill to predict the lower and upper tercile events 311	  

than the middle tercile for both the variables. 312	  

• In all three models, the AROC for precipitation and surface temperature 313	  

anomalies are largest over the tropical oceans and tropical land respectively. 314	  

• The improvement of FISH50 over the other two models for both variables is most 315	  

pronounced in the first season of the hindcast (JJA) and most apparent for the 316	  

extreme terciles than the middle terciles. 317	  

• The improvement of FISH50 over the other two models is more apparent in 318	  

precipitation than in surface temperature anomalies.  319	  

• The improvement of FISH50 over the other two models for both variables is best 320	  

seen over the land areas especially in the JJA season. 321	  

 322	  

5. Summary and conclusions 323	  

 In this paper we introduce a relatively new AGCM, the FGSM, which was used to 324	  

conduct an extensive set of seasonal hindcasts for boreal summer and fall season. The 325	  

FGSM follows from the extensive development of the model conducted at previously 326	  

Experimental Climate Prediction Center at Scripps Institute of Oceanography (Kanamitsu 327	  

et al. 2002; Shimpo et al. 2008; Kanamitsu et al. 2010). The FGSM was integrated at a 328	  
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spectral truncation of T248 (~50km grid resolution). Another important modification 329	  

made to FGSM was that we used the Kain-Fritsch version 2 (KF2; Kain and Fritsch 330	  

1993) convection scheme. The previous versions of the AGCM typically used the 331	  

Relaxed Arakawa Schubert (RAS; Moorthi and Suarez 1992) convection scheme. In 332	  

addition we introduced time varying CO2 concentration in the FGSM forecasts. In this 333	  

study we showed that for the same SST forcing, we get dramatic improvement in the 334	  

seasonal rainfall climatology of the FGSM using the KF2 scheme.   335	  

 Unlike previous two-tiered seasonal hindcasts or flux corrected coupled 336	  

integrations we took extensive care to ensure that no future information (that is 337	  

coincident with the forecast period) is used in making the bias correction for SST. We 338	  

showed that low frequency variations and climate change has a significant influence on 339	  

the period chosen for computing the observed climatology. We adopted the technique of 340	  

MEEMD (Wu et al. 2009) to develop a low pass filtered SST from the period prior to the 341	  

hindcast period (SSTOLF) to which the seasonally hindcasted coupled ocean-atmosphere 342	  

multi-model (CFSv2 and CCSM3.0) averaged monthly SST anomalies 343	  

(http://www.cpc.ncep.noaa.gov/products/NMME/) and the observed stationary seasonal 344	  

cycle were added to obtain a true two-tiered SST forecast field (SSTF). The SSTF was 345	  

used to force the Florida Climate Institute-Florida State University Seasonal Hindcasts at 346	  

50km resolution (FISH50). The SSTF bias was found to be systematically lower than 347	  

either of the two coupled model seasonal hindcast SST climatologies, with significant 348	  

improvements in the cold bias along the equatorial oceans and the warm bias over the 349	  

subtropical eastern Pacific and Atlantic Oceans.  350	  
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 We made a systematic comparison of the global and tropical seasonal 351	  

predictability of surface temperature and precipitation between the three models and 352	  

made the following salient observations: 353	  

1. The RMSE of the seasonal mean rainfall (and surface temperature) in both 354	  

seasons is higher over the tropics (global land) in FISH50 compared to either 355	  

CFSv2 or CCSM3. 356	  

2. The positive correlations of the ensemble mean seasonal precipitation anomalies 357	  

with corresponding observations are significantly large over the equatorial Pacific 358	  

and Atlantic Oceans in JJA, which get significantly diminished in SON in all 359	  

three models. These correlations are comparable in magnitude and spatial extent 360	  

in all three models. 361	  

3. FISH50 exhibits higher positive correlations of the ensemble mean seasonal 362	  

surface temperature anomalies with corresponding observations compared to 363	  

either of the two models over South America, Africa, northern Australia and 364	  

western United states in the first season of the hindcast (JJA). 365	  

4. All three models exhibit higher probabilistic skill for the lower and upper terciles 366	  

for both seasons than the middle tercile. 367	  

5. The probabilistic skill analysis of seasonal rainfall anomalies shows that the 368	  

benefit of FISH50 over the other two models is best realized in the first season 369	  

(JJA) and is realized the most compared to the other two models over the land 370	  

regions. FISH50 displays relatively improved seasonal prediction skill of 371	  

precipitation in FISH50 over certain land areas (e.g. United States, tropical South 372	  

America, maritime continent). 373	  
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6. The probabilistic skill in seasonal surface temperature anomalies reveal that 374	  

FISH50 improves significantly over the seasonal hindcasts from the other two 375	  

models over the tropical land areas in both seasons.  376	  

 In conclusion we have shown in this study, a two-tiered forecast with the 377	  

proposed bias correction for SST and using an AGCM with a modest increase in 378	  

resolution and with reasonable climatology can yield useful seasonal forecast skill that 379	  

exceeds in some respects to that attained from dynamical coupled ocean-atmosphere 380	  

models from which the forecasted SST was borrowed. In other words we suggest that we 381	  

may be at a stage where single tiered dynamical SST forecasts are of reasonable fidelity 382	  

that they can be used with appropriate bias corrections to pursue with higher resolution 383	  

two tiered AGCMs to yield superior seasonal forecasts. We contend that efforts like 384	  

FISH50 could prove to harvest more seasonal predictability. This study also clearly 385	  

reveals that there is useful model predictability to harvest when we adopt a probabilistic 386	  

skill analysis as an alternative to deterministic skill analysis. There is however room for 387	  

further development of FISH50 in areas of land surface initialization, higher spatial 388	  

resolution (both in the vertical especially in the stratosphere and in the horizontal), and 389	  

incorporation of direct/indirect effects of aerosols that could benefit in realizing more 390	  

useful seasonal predictability.  391	  
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 401	  

Appendix I: Signal to noise ratio 402	  

The signal to noise ratio is an objective measure of an AGCM’s predictability 403	  

(Straus and Shukla 2000). It is basically a measure of the variance displayed by the 404	  

ensemble mean relative to the ensemble spread of the seasonal hindcast. So higher values 405	  

of this ratio correspond to higher predictability of the phenomenon by the AGCM. This 406	  

measure of predictability however does not reflect on the verification of the hindcast or 407	  

forecast. The ensemble mean for a given climate variable (say Y), for a given climate 408	  

model, and for a given year j is:  409	  

€ 

Y j =
1
K

Yji
i=1

K

∑  410	  

where i is the index for number of ensemble members and K is the total number of 411	  

ensemble members (in our study it is 6). 412	  

The variance of the ensemble spread for a given year j is given by:  413	  

€ 

σ j
2 =

1
K

(Yji
i=1

K

∑ −Y j )
2  414	  

The variance of the ensemble spread is a measure of the noise in the forecast 415	  

system, which is averaged over all years of the hindcast to obtain: 416	  



	   20	  

€ 

σnoise
2 =

1
L

σ j
2

j=1

L

∑  417	  

The variance of the signal component is given by:  418	  

€ 

σsignal
2 =

1
L

(Y j
j =1

L

∑ −Y )2 419	  

where 420	  

€ 

Y =
1

LK
Yji

i=1

K

∑
j =1

L

∑  421	  

Then, predictability (Π) or signal to noise ratio is defined as: 422	  

€ 

Π =
σsignal
2

σsignal
2 +σnoise

2  423	  

 424	  

Appendix II: Area under the relative operating characteristic curve 425	  

The area under the relative operating characteristic curve (AROC) is obtained by plotting 426	  

the relative operating characteristic curve (ROC) for every grid point of the three models. 427	  

A contingency table along the lines shown in Table A below is prepared first: 428	  

Table A: Contingency Table 429	  

Does the ensemble probability for the event exceed the 
threshold? 

Is the event observed? 
Yes No 

Yes Hit (H) Miss (M) 
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No False Alarm (FA) Correct Rejection (CR) 
 430	  

The ROC is then plotted as the Hit Rate (HR) against the False Alarm Rate (FAR) for 431	  

every grid point. HR and FAR are defined as follows:  432	  

€ 

HR =
H

(H + M)
 433	  

 and  434	  

€ 

FAR =
FA

(FA +CR)
 435	  

To define an event in Table A we first rank the (seasonal mean surface temperature and 436	  

precipitation) observations and hindcasts independent of each other to develop separate 437	  

thresholds to define the lower, middle, and upper terciles for each of the variables. Then 438	  

for each tercile we construct the contingency table with several points plotted on the ROC 439	  

by defining the event for discrete number of ensemble members. For example, to develop 440	  

the ROC for lower tercile of JJA seasonal precipitation anomaly, we fill the contingency 441	  

table by seeking an answer for a given grid point to the question: Do 20% of the 442	  

ensemble members of the seasonal hindcast show a lower tercile event?  Likewise we 443	  

will fill the contingency table for the same grid point by seeking the answer to the 444	  

question: Do 40% of the ensemble members of the seasonal hindcast show a lower tercile 445	  

event? This is done similarly for 60% of ensemble members and so on.  By following this 446	  

series of questions, we are able to construct ROC for each grid point. Then using the 447	  

trapezoidal rule we compute AROC. By definition, any value lower than or equal to 0.5 448	  

for AROC would suggest that the seasonal hindcast is no better than climatology. 449	  
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Therefore for skillful probabilistic forecast, the seasonal hindcasts should have a value 450	  

greater than 0.5 for AROC. 451	  

Appendix III: Comparison of FISH50 with the other National Multi-Model 452	  

Ensemble (NMME) models 453	  

 A multi-institutional NMME (http://www.cpc.ncep.noaa.gov/products/ctb/nmme/) 454	  

project to conduct seasonal retrospective forecasts and also maintained in real time is 455	  

hosted on the International Research Institute for Climate and Society, Columbia 456	  

University. Here we compare the AROC across these models for the two seasons JJA and 457	  

SON at zero and one season lead for precipitation and surface temperature with FISH50. 458	  

 459	  

Figure AIII.1: Area under the ROC averaged over global oceans for (a) JJA, (b) SON, 460	  

over tropical oceans for (c) JJA, and (d) SON for low, middle, and upper terciles of 461	  

NMME and FISH50 precipitation. 462	  
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 463	  

Figure AIII.2: Area under the ROC averaged over global land for (a) JJA, (b) SON, over 464	  
tropical land for (c) JJA, and (d) SON for low, middle, and upper terciles of NMME and 465	  
FISH50 precipitation. 466	  
 467	  

 468	  
Figure AIII.3: Same as Fig. AIII.3 but for surface temperature.469	  



	   24	  

 470	  
References: 471	  

Bengtsson L, Schlese U, Roeckner E, Latif M, Barnett T, Graham N (1993) A two-tiered 472	  

approach to long-range climate forecasting. Science 261: 1026-1029. 473	  

Bohn TJ, Sonessa MY, Lettenmaier DP (2010) Do Multi-model ensemble average always 474	  

yield improvements in forecast skill? J. Hydromet., doi:10.1175/2010JHM1267.1 475	  

Barnett, TP, Bengtsson L, Arpe K, Flugel M, Graham N, Latif M, Ritchie J, Roeckner E, 476	  

Schlese U, Schulzweida U, Tyree M (1993) Forecasting global ENSO-related 477	  

climate anomalies. Tellus 46A: 381-397. 478	  

Cantelaube P and Terres J-M (2005) Seasonal weather forecast for crop yield modeling in 479	  

Europe. Tellus A, 57, 476-487. 480	  

Challinor AJ, Slingo J M. Wheeler TJ, and Doblas-Reyes FJ (2005) Probabilistic 481	  

simulations of crop yield over western India using the DEMETER seasonal 482	  

hindcast ensembles. Tellus A, 57, 498-512. 483	  

Chen F, Dudhia J (2001) Coupling and advanced land surface-hydrology model with the 484	  

Penn State-NCAR MM5 modeling system. Part I: Model implementation and 485	  

sensitivity. Mon Wea Rev 129: 569-585 486	  

Chou M-D, Lee K-T (1996) Parameterizations for the absorption of solar radiation by 487	  

water vapor and ozone. J Atmos Sci 53: 1203-1208 488	  

Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for 489	  

use in general circulation models. Technical report series on global modeling and 490	  

data assimilation, NASA/TM-1994-104606, 3, 85pp. 491	  

Clark, MP and Hay LE (2004) Use of medium-range numerical weather prediction model 492	  

output to produce forecasts of streamflow. J. Hydrometeorol., 5, 15-32. 493	  



	   25	  

DelSole T, Shukla J (2012) Climate models produce skillful predictions of Indian 494	  

summer monsoon rainfall. Geophys Res Letts 39: L09703, doi: 495	  

10.1029/2012GL051279. 496	  

Doblas-Reyes, J. and co-authors, 2005: A forecast quality assessment and end-to-end 497	  

probabilistic multi-model seasonal forecast system using a malaria model. Tellus 498	  

A, 57, 464-475. 499	  

Drijfhout SS, Walsteijn FH (1998) Eddy induced heat transport in a coupled ocean-500	  

atmosphere anomaly model. J. Phys. Oceanography, 28, 250-265. 501	  

Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD 502	  

(2003) Implementation of Noah land surface model advances in the National 503	  

Centers for Environmental Prediction operational mesoscale 437 Eta model. J 504	  

Geophys Res 108: 8851, doi: 10.1029/2002JD003296 505	  

Hong S-Y, Pan H-L (1996) Nonlinear boundary layer vertical diffusion in a medium-506	  

range forecast model. Mon Weather Rev 124: 2322-2339 507	  

Hurrell JW, Bader D, Delworth T, Kirtman B, Meehl J, Pan HL, Wielicki B (2007) White 508	  

Paper on Seamless Prediction. Available at 509	  

http://www.cgd.ucar.edu/cas/jhurrell/Docs/SeamlessModellingDraft03302007.pdf 510	  

Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: The 511	  

Kain-Fritsch scheme. The Representation of Cumulus convection in Numerical 512	  

Models, Meteorol. Monogr., No. 46, Amer Meteorol Soc, 165-170. 513	  

Kanamitsu M, Ebusuzaki W, Woollen J, Yang S-K, Hnilo J, Fiorino M, Potter GL 514	  

(2002a) NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteorol Soc 83: 515	  

1631-1643 516	  



	   26	  

Kanamitsu M, and Coauthors (2002b) NCEP Dynamical Seasonal Forecast System 2000. 517	  

Bull Amer Meteorol Soc 83: 1019-1037 518	  

Kanamitsu M, Yoshimura K, Yhang Y-B, Hong S-Y (2010) Errors of interannual 519	  

variability and multi-decadal trend in dynamical regional climate downscaling 520	  

and its corrections. J Geophys Res 115: D17115, doi: 10.1029/2009JD013511. 521	  

Kirtman BP, (2003) The COLA anomaly coupled model: Ensemble ENSO prediction. 522	  

Mon. Wea. Rev., 10, 2324-2341. 523	  

Kirtman BP, Fan Y, Schneider E K (2002) The COLA coupled and anomaly coupled  524	  

ocean-atmosphere GCM. J. Climate, 15, 2301-2320. 525	  

Kirtman, B. P., and D. Min, (2009) Multimodel Ensemble ENSO Prediction with CCSM 526	  

and CFS. Monthly Weather Review, 137, 2908-2930. 527	  

Mason SJ, Graham NE (1999) Conditional probabilities, relative operating 528	  

characteristics, and relative operating levels. Wea Forecasting 14: 713-725 529	  

Mason SJ, Graham NE (2002) Areas beneath the relative operating characteristics (ROC) 530	  

and relative operating levels (ROL) curves: significance and interpretation. Quart 531	  

J Roy Meteorol Soc 128: 2145-2166 532	  

Mitchell TD, Jones PD (2005) An improved method of constructing a database of 533	  

monthly climate observations and associated high resolution grids. Int J Climatol 534	  

25: 693-712 535	  

Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert. A Parameterization of Moist 536	  

Convection for General Circulation Models. Mon Wea Rev 120: 978-1002 537	  



	   27	  

Morse AP, Doblas-Reyes FJ, Hoshen MB, Hagedorn R, Palmer TN (2005) A forecast 538	  

quality assessment of an end-to-end probabilistic multi-model seasonal forecast 539	  

system using a malaria model. Tellus A, 57,  464-475. 540	  

Palmer TN,  Brankovic C, and Richardson DS, (2000) A probability and decision model 541	  

analysis of PROVOST seasonal multimodel ensemble integrations. Quart. J. Roy. 542	  

Meteor. Soc., 126, 2013–2034 543	  

Palmer TN, and Coauthors (2004) Development of a European Multimodel Ensemble 544	  

System for Seasonal-to-Interannual Prediction (DEMETER). Bull Amer Meteorol 545	  

Soc 85: 853-872. 546	  

Palmer TN,  Doblas-Reyes FJ , Weisheimer A,  Rodwell MJ (2009) Bulletin of the 547	  

American Meteorological Society, 89, 459-470. 548	  

Palmer TN,  Doblas-Reyes FJ , Weisheimer A,  Rodwell MJ (2009) Reply. Bulletin of the 549	  

American Meteorological Society Volume 90, 1551-1554. 550	  

Saha, S., et al. (2006) The climate forecast system at NCEP, J. Clim., 19, 3483 – 3517, 551	  

doi:10.1175/JCLI3812.1. 552	  

Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Amer Meteorol 553	  

Soc 91: 1015-1057 554	  

Shapiro M, et al. (2010) An Earth-System Prediction Initiative for the Twenty-First 555	  

Century. Bull. Amer. Soc., 91, 1377-1388. 556	  

Shimpo, A, Kanamitsu M, Iacobellis SF, Hong S-Y (2008) Comparison of Four Cloud 557	  

Schemes in Simulating the Seasonal Mean Field Forced by the Observed Sea 558	  

Surface Temperature. Mon Wea Rev 136: 2557-2575 559	  



	   28	  

Shukla J, (1998) Predictability in the midst of chaos: A scientific basis for climate 560	  

forecasting. Science 282: 728-731. 561	  

Shukla, J., J. Anderson, D. Baumhefner, C. Brankovic, Y. Chang, E. Kalnay, L. Marx, T. 562	  

Palmer, D. A. Paolino, J. Ploshay, S. Schubert, D. M. Straus, M. Suarez, J. 563	  

Tribbia, (2000) Dynamical Seasonal Prediction, Bulletin of the American 564	  

Meteorological Society, 81, 2593-2606. 565	  

Shukla, J. and co-authors, 2009: Revolution in climate prediction is both necessary and 566	  

possible. A declaration at the world modeling summit for climate prediction. Bull. 567	  

Amer. Soc., 2, 175-178. 568	  

Shukla J,  Palmer TN, Hagedorn R, Hoskins B, Kinter J,  Marotzke J, Miller M, Slingo J 569	  

(2010) Toward a new generation of world climate research and computing 570	  

facilities. Bulletin of the American Meteorological Society, 91, 1407-1412. 571	  

Shukla S, Voisin N and Lettenmaier DP (2012) Value of medium range weather forecasts 572	  

in the improvement of seasonal hydrologic prediction skill. Hydrol. Earth Sys. 573	  

Sci. Discuss., 9, 1827-1857. 574	  

Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s 575	  

historical land-ocean surface temperature analysis (1880-2006). J. Climate 21: 576	  

2283-2296 577	  

Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes FJ, Ferranti L, Mogensen 578	  

K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast System 3 579	  

and its prediction of sea surface temperature. Climate Dyn 37: 455-471. 580	  



	   29	  

Taylor, K. E., William, D., and F. Zwiers, 2000: The SST and seaice boundary conditions 581	  

for AMIPII simulation. PCMDI report 60. 24 pp. Available from http://www-582	  

pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/BCS/amip2bcs.php 583	  

Wang B, and Coauthors (2009) Advance and prospectus of seasonal prediction: 584	  

Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal 585	  

prediction (1980–2004). Climate Dyn 33: 93-117. 586	  

Wu, Z., and N. E Huang, 2009: Ensemble Empirical Mode Decomposition: a noise-587	  

assisted data analysis method. Advances in Adaptive Data Analysis. 1, 1-41. 588	  

Wu, Z., N. E. Huang, and X. Chen, 2009: The multi-dimensional Ensemble Empirical 589	  

Mode Decomposition method. Advances in Adaptive Data Analysis, 1, 339-372. 590	  

Wu Z., N. E. Huang, J. M. Wallace, B. Smoliak, X. Chen, 2011: On the time-varying 591	  

trend in global-mean surface temperature. Clim. Dyn. 37, 759-773, DOI: 592	  

10.1007/s00382-011-1128-8. 593	  

Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge 594	  

observations, satellite estimates, and numerical model outputs. Bull Amer 595	  

Meteorol Soc 78: 2539-2558. 596	  

 597	  

598	  



	   30	  

 598	  

 
Figure 1. The observed climatological SST for boreal (a) summer (JJA) season and (b) 
fall (SON) season. The bias of hindcasted SST at zero lead for boreal summer season 
from (c) CFSv2, (e) CCSM3. Similarly, the bias of hindcasted SST at one season lead for 
boreal fall season from (d) CFSv2 and (f) CCSM3.0. The units are in °C. 
 599	  
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 600	  

 
Figure 2. The observed climatology SST computed over a period of 1955-1981 for (a) JJA 
season and (b) SON season, and their corresponding differences with climatology computed over 
the period 1982-2008 for (c) JJA and (d) SON. The units are in °C. 
 601	  
 602	  

603	  



	   32	  

 603	  

 
Figure 3. The observed climatology of precipitation computed over a period of 1982-1993 for 
(a) JJA and (b) SON seasons. The corresponding climatology of precipitation from a single 
member seasonal hindcast for the period of 1982-1993 using the RAS convection scheme for (c) 
JJA (at zero lead) and (d) SON (one season lean) season. Likewise the climatology of 
precipitation from a single member seasonal hindcast for the period of 1982-1993 using the KF2 
convection scheme for (e) JJA (at zero lead) and (f) SON (one season lead). The units are in 
mm/day. 
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Figure 4. The climatological SST bias computed for (a) JJA season (at zero lead) and (b) 
SON season (at one season lead) from FISH50. The observed SST climatology was 
computed over the period 1982-2008 as shown in Figs. 1a and 1b. The units are in °C. 
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 607	  

 
Figure 5. The standard deviation of JJA seasonal mean SST from (a) observations, and 
seasonal hindcasts at zero lead from (b) FISH50, (c) CFSv2, and (d) CCSM3. Similarly 
the standard deviation of SON seasonal mean SST from (e) observations, and seasonal 
hindcasts at one season lead from (f) FISH50, (g) CFSv2, and (h) CCSM3. The units are 
in °C. 
 608	  
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Figure 6. The observed climatology of precipitation (1982-2008) in (a) JJA, and (b) 
SON. The root mean square error of the ensemble mean precipitation for JJA (zero lead) 
for seasonal hindcasts from (c) FISH50, (e) CFSv2, and (g) CCSM3. Likewise, the root 
mean square error of the ensemble mean precipitation for SON (one season lead) for 
seasonal hindcasts from (d) FISH50, (f) CFSv2, and (h) CCSM3. The units are in mm 
day-1. 
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 610	  

 
Figure 7. The zonal mean climtological (a) summer (JJA) and (b) fall (SON) 
precipitation from observations and the three seasonal hindcasts. 
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 612	  

 
Figure 8. The observed climatology of surface temperature (1982-2008) in (a) JJA, and 
(b) SON. The root mean square error of the ensemble mean precipitation for JJA (zero 
lead) for seasonal hindcasts from (c) FISH50, (e) CFSv2, and (g) CCSM3. Likewise, the 
root mean square error of the ensemble mean precipitation for SON (one season lead) for 
seasonal hindcasts from (d) FISH50, (f) CFSv2, and (h) CCSM3. The units are in . 
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 614	  

 
Figure 9. The correlation of the ensemble mean precipitation for JJA (zero lead) from (a) 
FISH50, (c) CFSv2, and (e) CCSM3. Similarly, the correlation of the ensemble mean 
precipitation for SON (one season lead) from (b) FISH50, (d) CFSv2, and (f) CCSM3. 
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Figure 10. The signal to noise ratio of precipitation for JJA season (zero lead) for (a) 
FISH50, (c) CFSv2, and (e) CCSM3. The signal to noise ratio of precipitation for SON 
(one season lead) from (b) FISH50, (d) CFSv2, and (f) CCSM3. 
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 618	  

 
Figure 11. The correlation of the ensemble mean T2m for JJA (zero lead) from (a) 
FISH50, (c) CFSv2, and (e) CCSM3. Similarly, the correlation of the ensemble mean 
precipitation for SON (one season lead) from (b) FISH50, (d) CFSv2, and (f) CCSM3. 
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Figure 12. The signal to noise ratio of T2m for JJA season (zero lead) for (a) FISH50, (c) 
CFSv2, and (e) CCSM3. The signal to noise ratio of precipitation for SON (one season 
lead) from (b) FISH50, (d) CFSv2, and (f) CCSM3. 
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Figure 13. The area under the relative operation characteristic curve (ROC) for (a) lower, 
(b) middle, and (c) upper tercile for JJA (zero season lead) from FISH50 precipitation, 
Similarly, the area under the ROC for (d) lower, (e) middle, and (f) upper tercile for SON 
(one season lead) from FISH50 precipitation. 
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 629	  

 
Figure 14. The area under the relative operation characteristic curve (ROC) for (a) lower, 
(b) middle, and (c) upper tercile for JJA (zero season lead) from CFSv2 precipitation, 
Similarly, the area under the ROC for (d) lower, (e) middle, and (f) upper tercile for SON 
(one season lead) from CFSv2 precipitation. 
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 631	  

 
Figure 15. The area under the relative operation characteristic curve (ROC) for (a) lower, 
(b) middle, and (c) upper tercile for JJA (zero season lead) from CCSM3 precipitation, 
Similarly, the area under the ROC for (d) lower, (e) middle, and (f) upper tercile for SON 
(one season lead) from CCSM3 precipitation. 
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Figure 16. Area under the ROC averaged over (a) global oceans, (b) tropical oceans, (c) 
global land, and (d) tropical land for low, middle, and upper terciles of CFSv2, CCSM3, 
and FISH50 precipitation in JJA and SON. 
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Figure 17. The area under the relative operation characteristic curve (ROC) for (a) lower, 
(b) middle, and (c) upper tercile for JJA (zero season lead) from FISH50 T2m, Similarly, 
the area under the ROC for (d) lower, (e) middle, and (f) upper tercile for SON (one 
season lead) from FISH50 T2m. 
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 639	  

 
Figure 18. The area under the relative operation characteristic curve (ROC) for (a) lower, 
(b) middle, and (c) upper tercile for JJA (zero season lead) from CFSv2 T2m, Similarly, 
the area under the ROC for (d) lower, (e) middle, and (f) upper tercile for SON (one 
season lead) from CFSv2 T2m. 
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 641	  

 
Figure 19. The area under the relative operation characteristic curve (ROC) for (a) lower, 
(b) middle, and (c) upper tercile for JJA (zero season lead) from CCSM3 T2m, Similarly, 
the area under the ROC for (d) lower, (e) middle, and (f) upper tercile for SON (one 
season lead) from CCSM3 T2m. 
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Figure 20. Area under the ROC averaged over (a) global land and (b) tropical land for 
low, middle, and upper terciles of CFSv2, CCSM3, and FISH50 temperatures in JJA and 
SON. 
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